
Page 1

RoboWar
© 1990 David Harris

Welcome to RoboWar. In this game, you will design and program robot gladiators,
then pit them against each other in a deadly battle. May victory go to the
strongest!

Features of RoboWar include animated combat, color graphics on any machine
with a color monitor, and a complete programming language, RoboTalk, with an
editor, assembler, and interpreter.

To launch RoboWar, double click on the game or any saved robot icon. A window
will appear with a number of circles connected by lines:

This window shows the Central Control station. From Central Control, you may
go to any of the other five stations, the Drafting Board, Hardware Store, Assembly
Line, Camp, or Arena. If you would just like to play with predesigned robots, you
only need to go to the Camp (where robots are chosen for battle) and the Arena
(where the battles take place). However, if you would like to try the most exciting
part of RoboWar, designing your own robots, you will also need to use the Drafting
Board to write your software, the Hardware Store to select various hardware
additions to make your robot more potent, and to design a customized picture for
your robot, and the Assembly Line, where the robot’s software is assembled into
executable form.

The rest of these instructions are divided into five parts. The first part is a step-by-
step tutorial on writing simple robots and lead them into battle. The second part
describes each of the five stations in more detail. The

Page 2
third part is an introduction to RoboTalk, the language with which robots are
designed. The fourth part is a reference manual on the RoboTalk assembler and
interpreter, describing each instruction in more detail. The fifth part details some
of RoboWar’s advanced features. Finally, the appendix shows two slightly more
complex robots that may serve as examples for budding RoboTalk programmers.

Robots are generally referred to as males. If you consider your robots to be
female, so be it. Call me a sexist pig and substitute she for he throughout the rest
of the instructions.

I. A RoboWar Tutorial

Let us begin by creating two simple robot gladiators. The first robot will just stand
still and wait for other robots to shoot it. The second will be somewhat more
intelligent; it will rotate its guns seeking a target. When it finds one, it will lock on
and keep shooting until the target is destroyed.

If RoboWar is not running, launch it from the Finder. The Central Control window,
with five circles around a central oval, should appear. The five circles are the
various stations; they are where you can design and equip robots and send them
into battle. In the lower right corner is a box with a message, “No Robot Selected”
and a dimmed button, “Central Control.” First, we must select a robot to edit.

Choose “New Robot…” from the File menu. A dialog box will appear, requesting
the name of the robot. Type “Target” and click Save or press return. Now, a red
circle and the name Target should appear in the corner where “No Robot Selected”
once was. Target is the selected robot.

Now that we have created Target, we must write his software. Click on the circle
labeled Drafting Board. This changes the window to show the Drafting Board, the
station where robot software is designed. The left part of the window is a text
editor; the right part displays some statistics about the current program.

First, type “# TARGET” and hit return. This line is a comment because it begins
with the # symbol. It is ignored by the robot, but is useful for humans to remember
which robot we’re programming. Leave another blank line, then type “LOOP:”
and hit return again. The word LOOP: is a label definition. It identifies this point
in the software with the name LOOP. Indent a few spaces (one tab press is
conventional) and type “LOOP JUMP”. This line means that the program should
jump back to the

Page 3
label LOOP. Thus, the program will just go in circles, not doing any real action.
The robot will just be a stationary target, a sitting duck for our next robot to track
down. At this point, the completed code should read as follows.

TARGET

LOOP:
 LOOP JUMP

If it does not, make the necessary corrections so that it does. RoboTalk, the
language in which we are writing our robot in, does not care if letters are upper or
lower case. However, all words MUST be spelled correctly.

When the robot’s instructions are correct, click on the button, “Central Control” in
the lower right corner. This takes us back to Central Control and automatically
saves the robot’s software. Now, click on the Assembly Line circle to go to that
station.

At the Assembly Line, we assemble a robot’s brain from its software. Every time
we change the software at the Drafting Board, we must reassemble it at the
Assembly Line. Click on the button labeled “Assemble Robot.” If all goes well,
the message, “Robot Assembled” will appear, along with the number of lines in the
program. If there is an error, the computer will beep and mention the error and line
number. If you encounter an error, return to the Drafting Board via Central
Control, recheck the program, make the correction, and return to the Assembly
Line to reassemble the robot. When the robot successfully assembles, return to
Central Control.

Let’s test Target now to see that he really just stands in one place. Click on the
station Camp. A new view will appear with a roster of robots arrayed for battle. At
first, there should be no robots selected. Click on the Add button to add Target to
the roster. Another dialog box will appear, asking for the robot to add. Choose
Target and click open or press return. A filled circle will appear in the first
position, beside the name Target. Add another Target or two by clicking on the
Duplicate button beside Add. This button adds another robot to the roster with the
same name as the previously selected one. Now that some robots are ready in
Camp, return to Central Control.

Now we are finally ready to go to the Arena. Click on the Arena station. A view
will appear with a few robots scattered randomly around the left

Page 4
and a roster on the right. The left part of the window is the actual battlefield in
which combat takes place. Click on the Battle button to begin.

The robots will be rearranged in random positions on the field. They should stand
still, just as our software instructs them. Beside their names, the vital statistics of
energy and damage should appear. Both are set at 100. Since the robots neither
expend energy for combat nor take damage from other robots’ shots, both values
should remain at 100. To stop the battle, click on the Halt button. The Halt button
is the only button recognized during combat; all other mouse clicks are locked out.
Now return to Central Control.

Target is not a very exciting robot. Let’s design a more interesting one that will
seek out and shoot down robots like Target. From the File menu, choose New
Robot… again. Name the new robot ShotBot. (Note: the robot’s name does not
really matter; it could be anything you want.) Go to the Drafting Board and enter
the following code:

ShotBot
Written 1/3/90 by David Harris

Main:
 Range 0 > FireSub RotateSub IFE
 Main JUMP

FireSub:
 20 fire’ STORE
 RETURN

RotateSub:
 5 AIM +
 AIM’ STORE
 RETURN

This robot is somewhat more complex than Target. The first two lines are
comments, identifying the robot and his author. This is very important if
somebody else was to look at your robot later; it also is a good way to feed your
ego. The first label definition is Main:. Note that the name of the label definition
is not important; it could be anything except a variable name or an operator (see
the reference manual, section IV, for a complete list of variables and operators).
However, if we changed the name Main, we would have to be sure to change the
reference to it in the line Main JUMP.

The first instructions under Main check the range to the nearest target in the sights.
The variable Range is either 0 if there is no target in sight or the distance to the
target if one is visible. The instructions “Range 0 >”

Page 5
compare Range to 0. Note that in RoboTalk, the operator, in this case >, always
follows the operands, Range and 0. This is similar to some foreign languages,
where the verb always follows the nouns.

The next three words, “FireSub RotateSub IFE” check the result of the
comparison. If the comparison is true, if Range really is greater than 0, meaning
that a target is in sight, the robot goes to FireSub, which fires a bullet. If the
comparison is false and no robot is in sight, the robot branches to RotateSub,
which rotates the turret, seeking a target. The IFE instruction (meaning If-Then-
Else) makes this check, always branching to the first label if the comparison is true
and the second if it is false.

The next line, “Main JUMP” jumps back to Main, repeating the cycle.

The subroutine FireSub is marked by a label definition (FireSub:). It stores 20 in
the variable FIRE, which causes ShotBot to launch a shot of energy 20 in the
direction its turret is pointing. Note the format of the STORE instruction: 1) the
amount to store, 2) the variable in which to store it, 3) the word STORE. Also note
that the variable is followed by a single quotation mark. The quote means that we
are dealing with the variable name itself, not the contents of the variable. This is
very important; all variables used with STORE must be followed by this single
quote. Conversely, when you want the value of the variable, as we did when we
checked the Range variable above, you must be sure not to quote the variable. The
last instruction under FireSub, RETURN, returns to the point that the IF left off.

RotateSub is similar in design to FireSub. It rotates the turret five degrees, seeking
the next target. First it calculates the new value of AIM, using the instructions
AIM 5 +. Note that, once again, the operator (+) follows its two operands (AIM
and 5). The plus adds together the previous two operands, leaving the number
AIM + 5. The next line stores this number in AIM. As with FIRE, the variable
AIM must be quoted because it is the target of a STORE command. Finally,
RETURN returns control to the main loop.

Return to Central Control, then assemble ShotBot at the Assembly Line. When the
robot assembles correctly, go to Camp. Add a ShotBot to the list of robots. Now,
go to the Arena and choose Battle.

This time, the Target robots should stay in one place as before. However, the
ShotBot will rotate its turret until it sights one. It will lock on, continuing to shoot
until the Target is destroyed. When all of the Target

Page 6
robots are eliminated, the battle will end. Also, notice how the energy and damage
of each robot changes. Target uses no energy, but takes damage from each shot
that hits. This damage cannot be repaired. When it reaches 0, the robot is
destroyed. ShotBot takes no damage, but his energy supply usually remains very
low. This is because he is putting all of his energy into shots. Although energy
slowly returns over time, ShotBot uses it rapidly, thus keeping the energy near
zero.

Now you have seen how to design and assemble simple robots. You know how to
choose robots from the Camp and let them battle at the Arena. Two paths await
you. If there are predesigned robots on this disk, you may experiment with them.
See what robots are most effective against others, then try teaming them up from
Camp. Perhaps you will want to tinker with their programs a bit, or modify their
equipment at the hardware store. Part II describes in more depth the various
stations you will use.

If you would really like to see the true excitement of RoboWar, however, you
should try designing your own robots. Designing and debugging a robot is well
worth the effort if it can challenge a friend’s ’bot in battle. Writing robots is
somewhat more of a challenge than simply using preprogrammed ones. You will
want to read the next three parts. Part II describes the various stations. Part III
introduces RoboTalk. It discusses the concepts of the stack, operands and
operators, comments, variables, and labels. Part IV is a complete listing of all the
operators and variables defined in RoboTalk. It also gives some technical
information about the assembler and interpreter that are part of RoboWar. If you
are ready for an exciting challenge, read on!

II. RoboWar Stations

Central Control is the master switchboard of RoboWar. From there, you can visit
the five stations where robots are designed, built, and tested. All of the stations are
divided into three panels. The large square panel on the left is where most action
takes place in the station. The panel on the upper right shows the name of the
current station and lists other important information. The panel on the lower right
shows the name of the currently selected robot (used at the Drafting Board,
Hardware Store, and Assembly Line), and has a button to return to central control.
Each station is described below.

Drafting Board

Page 7
Robot software is designed at the Drafting Board. The left panel of the section is a
text editor window that performs like most other text editors. It includes cutting,
copying, and pasting text, as well as keyboard editing. The tab key automatically
indents to the nearest multiple of four spaces, to help line up columns.

The upper right panel shows the length of the robot’s software and the current
position of the cursor within the document. The current position is useful if an
error is present in the program. The Assembly Line reports the line number of the
error it detects. Thus, you may use the current position indicator to track down the
line without manually counting from the start.

The Print button, also in the upper right panel, will print the entire software listing.
Be sure a printer is connected and ready, then click OK when the standard printer
dialog appears.

When the Drafting Board is exited or another robot is loaded, all changes to the
robot’s software are automatically saved.

Hardware Store

Robots are equipped with hardware options at the Hardware Store. The left panel
has two possible views: the first for choosing tradeoffs; the second for designing an
icon.

In the first view, seven boxes and a list of radio buttons are shown. Each radio
button lets you set the state of a given hardware option. Under the Energy Max
box, the four buttons, High, Normal, Low, and Very Low, correspond to the values
150, 100, 60, and 40. These values are the highest that the robot’s energy may
reach at any given time. They also set the robot’s initial energy when a new battle
begins.

The buttons of Damage Max, High, Normal, Low, and Very Low, correspond to the
values 150, 100, 60, and 30. They are the initial damage ratings of a robot. When
the damage rating drops to zero, the robot is reduced to a smouldering heap of
scrap, and is removed from the arena.

The buttons of Shield Max, High, Normal, Low, and None correspond to the values
100, 50, 25, and 0. The Shield Max defines the highest level at which shields may
be set without causing great drain on the robot’s energy resources.

Page 8
The buttons of Processor Speed, Fast, Normal, and Slow, define how many
instructions can be executed by the robot during a chronon, or turn. Fast allows 15
instructions, Normal 10, and Slow 5. A robot with a faster processor can get more
done during its turn than a robot with a slower one. This can be very useful if the
robot has to execute a very complex program.

The Bullets box defines the type of bullets that a robot shoots. Normal bullets
move across the screen at a speed of 12 pixels per chronon. If they hit their target,
they do damage equal to the energy put into them. Exploding bullets move like
normal bullets, but explode when they impact. The explosion grows at a rate of 5
units per chronon until it detonates with a radius of 30. All robots caught in this
blast radius take damage equal to one and a half times the energy put into the
bullet. Rubber bullets behave just like normal bullets, but only cause half damage
when they hit.

The Missiles box allows a robot to be equipped with missiles. Missiles only move
at a velocity of 5 pixels per chronon. However, if they hit their target, they cause
damage of one and a half times the energy put into them.

TacNukes, short for Tactical Nuclear Devices, are another form of weaponry.
TacNukes are placed at the location of the owner when he fires them; they do not
move at all. Instead, they expand like exploding bullets, but to a radius of 50
pixels. All within the blast radius, including the robot who set them if he is foolish
enough to not move away rapidly, are affected and take damage equal to one and a
half times the initial energy investment.

Two buttons at the bottom of the screen allow editing the current robot’s picture, or
icon. The Design Icon button brings up the second view, the Icon Editor, while the
Delete Icon erases any icon that the robot might have.

The second view shows the robot’s icons magnified to 8x normal size. Each robot
has two icons: one with shields activated and the other without. If no icon is
designed, a robot uses a default picture. The second view may show either the
shield or shieldless picture of the robot. A label above the picture notes this view.
Three buttons at the bottom aid in editing. The first, titled Shields or Shieldless,
transfers to the other picture. The second, Copy Icon, copies the present picture
onto the other icon. This is useful if a robot was supposed to look similar with and
without shields. The shieldless icon could be drawn. Then the Copy button could
be used to copy the icon over to the shield picture. Now, the shield picture would
only need a little editing, instead of recreation from scratch. The third

Page 9
button, Save Icon, saves the current icons and returns to the first view of
advantages and disadvantages.

The large square in the icon editor view is a thirty-two by thirty-two array of
squares. The central circle shows the radius through which the turrets rotate and
bullets may impact. The area outside the circle is unaffected by oncoming shots.
Thus, the size or shape of a robot does not affect its chances of being hit by a
bullet. Clicking in the square allows drawing or erasing pixels.

The following note is for advanced programmers; it may be blissfully ignored
unless you are really unusual. Advanced programmers may wish to use a different
icon editor to design their robots. Any other editor is acceptable. If another editor
(such as ResEdit) is used, the final icons must be copied into the robot’s resource
fork. The shieldless picture must be saved as ICON ID#1000, while the shield
picture must be ICON ID#1001.

The upper right panel of the Hardware Store displays status information about the
selected hardware. It lists the maximum values of energy, damage, and shields. It
notes the processor speed, type of bullet, and whether missiles or TacNukes are
enabled. It also keeps an account of the number of advantages and disadvantages
that the robot has. Each change from normal equipment (except a redesigned icon)
is worth a certain number of advantage or disadvantage points. Any combination
of points may be chosen. However, a robot may not have more advantages than
disadvantages.

Beneath the advantages and disadvantages list is an area titled Icons. If an icon has
been designed, it will appear in the Icons area. The area will also show the turret,
as it rotates around a complete circle. There may be two icons. The left one is the
shieldless picture; the right is the icon with shields enabled.

When the Hardware Store is exited or another robot is selected, all changes are
automatically saved.

Assembly Line

At the Assembly Line, the software of a robot is assembled into a form that can
execute most efficiently in the Arena. After each change at the Drafting Board, the
robot MUST be reassembled for the changes to take effect during combat.

Page 10
The right panel displays the dates of last changes and the length of the robot’s
software. A button at the bottom labeled Assemble assembles the software. If the
assembly is error-free, a message appears in the middle of the panel saying that the
assembly is complete and reporting the number of lines assembled. Otherwise, a
message notes that there is an error. It describes the kind of error and the line of
source code in which it is present.

Note that pressing ⌘-A is a substitute for clicking the Assemble button.

Camp

Teams are chosen and robots are arrayed for battle at the Camp. The left panel
shows a roster of up to six robots, and a set of buttons for teaming these robots.

First robots must be added to the roster. Click on the Add button or press ⌘-A. A
dialog box will appear. Select the robot to add. It will appear on the list and the
position with the robot will be highlighted. This highlighted line means that that
robot is selected. The other commands, Duplicate (⌘-D), Remove (⌘-R), Alone
(⌘-0), Team 1 (⌘-1), Team 2 (⌘-2), and Team 3 (⌘-3), affect only the selected
robot. Clicking on a different robot selects it instead; clicking on a blank line
selects no robot at all.

Duplicate makes a copy of a robot. If several of the same model of robot are to be
used for testing purposes, Adding one and Duplicating him multiple times may be
more convenient than having to add the same robot several times. Remove deletes
a robot from the list of combatants.

Double-clicking on a robot in the roster makes it the currently selected robot for
the Drafting Board, Hardware Store, and Assembly Line. The name of the robot
will replace the old selection in the box on the lower right beside the Central
Control button.

The bottom row of buttons deal with teams. Teams of robots can work together.
They do not see each other in their sights, so they will not intentionally shoot at
each other. Teams of robots can also communicate with each other using the
Channel and Signal variables, described in part IV. Alone places a robot on no
team at all. Team 1 through 3 set robots on those teams.

Page 11
At least two robots must be chosen from the Camp before they can fight in the
Arena.

The Arena

Robot gladiators fight their battles at the Arena. The left panel, a 300 by 300
rectangle, is the pit in which the robot fight. They must be careful not to run into
the walls; doing so can greatly damage an unwary robot. Each of the robots is
drawn in the arena. When a battle starts, each is placed in a random location.

The right panel lists the robots in combat, along with their icons. If a robot is on a
team, his team number appears beneath his name. Beside the robot is his current
Damage and Energy ratings. If a robot is destroyed in battle, the stats are replaced
by the message “Deceased.”

Clicking on the Battle button (or pressing ⌘-B) starts a battle. The robots
continue fighting until only one victor is left. If you wish to terminate the battle
(perhaps a team of two friends are remaining or perhaps you are tired of the
carnage or lack thereof), click on the Halt button. During battle, the Halt button is
the only control enabled; clicking elsewhere on the screen has no effect.

III. An Introduction to RoboTalk

RoboTalk is the language in which robots are programmed for RoboWar. The
language is based on Reverse Polish notation (RPN), similar to the HP calculators.
This section introduces a number of important RoboTalk concepts: the Stack,
operands and operators, comments, tokens, delimiters, and programs, numbers,
label definitions, labels, and variables. It also describes the hardware interactions
that robots have, including the effects of energy, shields, weapons, and collisions.

The Stack

The stack is the basis of all RoboTalk instructions. It works like a stack of plates:
a new plate may be placed (pushed) onto the top of the stack or removed (popped)
off of it. All operands, such as numbers, variable names, and labels are pushed
onto the stack. Operators may pop information off the top of the stack, act on it,
and push any result back onto the stack.

Page 12
The most recently pushed operand on the stack is called the top of the stack. A
new operand pushed onto the stack is placed above the old top and becomes the
new top of the stack. An operand is popped off the top of the stack, leaving the
operand beneath it as the new top. If more than 100 operands are on the stack at
once (an unlikely occurrence), the robot has a Stack Overflow error. If one tries to
pop a number off of the stack when it is entirely empty, a Stack Underflow error is
reported.

Tokens, Delimiters, and Programs

A token is a group of characters, usually a number or word. Every element of
RoboTalk: numbers, label definitions, labels, variables, and operands, are really
tokens. Each token must be separated from the next by at least one delimiter.

A delimiter is a symbol that separates two tokens. The most common delimiters
are spaces and new lines. For example, in the line “Main JUMP” the space
separating Main and Jump is a delimiter. Other valid delimiters include the tabs,
semicolons, and commas. RoboTalk does not care which delimiters are used
where. Thus ShotBot could be rewritten as:

Main:,Range;0 >;FireSub
RotateSub,IFE,Main;JUMP;FireSub:;;;20 fire’ STORE,RETURN,RotateSub:
 5 AIM + ,AIM’ STORE;RETURN

However, this is very unclear for the reader. Therefore, a style similar to that
shown in the original ShotBot, with spaces and new lines used for delimiters, and
indentation following label definitions, is recommended.

A program is a series of tokens that work together to control a robot. Each robot’s
software is a single program. The segments branched to by IF and CALL operators
are called subroutines. Each of the types of tokens is described below.

Comments

Comments are messages that a human may use to help understand a program, but
that are ignored by RoboTalk. For example, in ShotBot, described in Part I, the
line “# Written 1/3/90 by David Harris” is a comment. It reports to the user information
about the robot’s author, but does not generate any code that RoboTalk interprets.

Comments come in two varieties for convenience. The first variety begins with a #
sign. This comment means that the rest of the line is a comment

Page 13
and should be ignored. The comment might come at the beginning of the line, or
might follow some real code, as in the line:

AIM 5 + AIM’ STORE # Rotate Turret.

The other form of comment is marked by the { and } symbols (open and close
braces.) The open brace indicates a start of the comment. The comment is ended
by the close brace. There must be a close brace for every open brace. However,
comments may be nested; that is, a pair of open and close braces may appear
between another set of braces. The following program shows an example of
comments marked by braces:

An example robot

{ This is the beginning of a comment.
 It continues on the next line.
 {This comment is nested within the outer one
 } The previous comment is closed.

main: # this is not a label definition; it is enclosed in a comment
}

main: # this is a valid label definition
 main jump

Label Definitions

Label definitions mark a point in the program so that jumps and branches may go
to that point. A label definition consists of a word followed by a colon. Label
definitions do not generate any RoboTalk code. However, they are used to mark
the destination of labels in other parts of the program.

Label definitions should not have the same names as variables or operators. Also,
there must not be two label definitions with the same names in a single program.

Operands and Operators

All tokens other than comments and label definitions are either operands or
operators. An operand is a number, label, or variable name that is pushed onto the
stack. An operator is a command that acts on the stack. The various operands and
operators are described below.

Numbers

Page 14
A number is just that: a collection of digits. Numbers are always pushed onto the
stack when they are encountered. Numbers may range from -19999 to 19999.
They may have a plus or minus sign in front of them; however, there must be no
delimiters between the sign and the digits. (If there were, RoboTalk would
interpret it as an operand, either plus or minus, followed by a positive number.)

Labels

Labels are used with the IF, IFE, JUMP, and CALL operators. They are coded as
the location in the program to jump to, and thus are pushed onto the top of the
stack when encountered.

Variables

Variables, also known as robot registers, contain information from the robot. They
include the range to the nearest robot in the sights, a robot’s current X and Y
position, energy, etc. A complete list of variables and their functions appears in
Part IV.

Variables may appear in two forms in a program: unquoted and quoted. An
unquoted variable really refers to the contents, or value, of that variable, while a
quoted variable indicates the variable name itself. Quoted variables (written as the
variable name followed immediately by a single quotation mark e.g. AIM’) are
used with the STORE operator, as they are the location in which a number should
be stored. Quoted variables must be used with every STORE operator, and should
not be used with any other expression. For example, although “5 AIM’ +” will
successfully assemble, the results will be meaningless and will probably cause the
robot to do strange things, because the number 5 is being added to the name of the
variable AIM, not the contents of AIM.

Operators

Operators may pop information off of a stack, act on it, and push information back
onto the stack. A complete list of operators appears in Part IV. They include
mathematical functions like +, -, and *, stack manipulation functions like DROP
and SWAP, and branching functions like JUMP and CALL.

Advanced programmers should note that all branches that may be returned from,
namely, those generated by IF, IFE, and CALL, push the return address onto the
stack. Thus if a subroutine were to be written that would

Page 15
act on information on the stack, it would first have to save the return address
before acting. Then, it would have to restore the return address before making a
RETURN statement. The following code, which invokes a subroutine to double
the number on the stack, demonstrates this technique:

Demonstration Robot

Main:
 5 # the number to double
 DoubleSub CALL # double it
 DROP # discard it
 Main JUMP # repeat forever...

DoubleSub:
 r’ STORE # store the return address in the variable r
 2 * # multiply the top number on the stack by 2
 r # restore the return address to the stack
 RETURN # and return

An alternative method of writing DoubleSub would use stack manipulation
commands, saving an instruction:

DoubleSub:
 SWAP # swap return address and number to multiply
 2 * # multiply the top number on the stack by 2
 SWAP # swap return address back to top of stack
 RETURN # and return

Sample Program

Now that we have learned all the elements of a program, let us see how they act on
the stack in a simple robot. The following robot remains stationary, rotating its
turret:

SimpleRobot

Main:
 Aim 5 + # Rotate 5 degrees
 Aim’ STORE
 Main JUMP # Repeat

Suppose that the variable Aim currently contained 90 degrees, due east. Let us
trace the stack through each instruction:

Instruction: # SimpleRobot
Type: Comment
Stack: Empty

Instruction: Main:
Type: Label Definition
Stack: Empty

Page 16
Instruction: Aim
Type: Unquoted variable = 90
Stack: 90 <-- Top of Stack

Instruction: 5
Type: Number
Stack: 5 <-- Top of Stack

 90

Instruction: +
Type: Operator
Stack: 95 <-- Top of Stack

Instruction: # Rotate 5 Degrees
Type: Comment
Stack: 95 <-- Top of Stack

Instruction: Aim’
Type: Quoted Variable
Stack: Aim’ <-- Top of Stack

 95

Instruction: STORE
Type: Operator
Stack: Empty

Instruction: Main
Type: Label
Stack: Main <-- Top of Stack

Instruction: JUMP
Type: Operator
Stack: Empty

The program repeats this cycle, incrementing Aim by 5 degrees each time through
the loop.

Hardware Interactions

The robot interacts with his environment by reading and writing variables. For
example, a robot could check his X position by reading the variable X, or could
fire a bullet by writing some amount of energy to the Fire variable. Bullets,
missiles, and TacNukes were described in Part II, and in more detail in Part IV.
This section gives an overview of the robot’s energy and damage statistics, as well
as the effect of collisions with other robots and walls.

The robot’s energy, listed in the upper right box during combat, is the total amount
of power available to the robot. It is used for acceleration, maintaining shields, and
shooting weapons. Each chronon the energy recharges by two points.

Page 17

Large amounts of energy consumption may place a robot at negative energy.
While a robot has negative energy, it cannot move or interpret any instructions. It
is just a sitting duck until the energy returns to the realm of positive numbers.

The robot’s damage, also listed in the upper right box during combat, is how much
damage may still be taken before the robot is destroyed. Damage does not
regenerate; once a robot takes damage, the damage is present until a new battle
starts.

Collisions are the bane of any moving robot. Two types of collisions exist:
collisions with walls and collisions with other robots. Collisions with walls are the
most dangerous, but also the most avoidable. If a robot hits a wall, it takes five
points of damage per chronon until it moves back into the main arena. However,
checking the X and Y positions of a robot, and adjusting velocity if the robot nears
a wall, should prevent this kind of collision.

Collisions with other robots are sensed in the Collision variable. It returns a 1 if
read while the robot has hit another. Each chronon that the robots are touching
causes 1 point of damage to both combatants. Furthermore, the robots cannot
move through each other, so they may end up locked together until one or the other
perishes. However, a smart moving robot will check the collision variable
frequently. If he has collided, he may jump to some code that locates and destroys
his opponent.

IV. RoboTalk Reference Manual

This manual is divided into four sections. The first describes the format of the
code that the assembler produces. It is only of technical interest; it is not necessary
to program a robot. The second describes each of the RoboTalk operators. The
third describes each of the variables RoboTalk supports. Finally, the fourth
describes the interpreter’s action.

The Assembler

At the Assembly Line, the RoboTalk assembler converts the source code written in
the Drafting Board into a series of two byte instructions, the object code, that the
interpreter can execute most rapidly. The following information describes the
format of the code the assembler creates. It is only of interest for advanced
programmers; others may skip to the Operators section below, which describes
each of the RoboTalk operators.

Page 18

Page 19
Comments are left out of the object code. Label definitions (a label followed by a
colon) are also not included. Labels (such as MAIN in the instructions MAIN
JUMP) are converted into numbers, indicating the instruction number that the label
definition preceded. Numbers in the range of -19999 to 19999 are placed in the
object code as simple numbers. Variables are converted to a coded form, from
20300 to 20399. If a variable is not quoted, a RECALL operator is generated after
the variable. Finally, operators are also converted into a coded form, from 20000
to 20199. Following the very last instruction, a 20110, or END instruction is
generated. This alerts the interpreter if the end of the robot’s code has been
encountered.

As an example, let us see what kind of object code the following simple program
would produce:

Example
Written 1/2/90 by David Harris

LOOP:
5 aim + aim’ store
LOOP jump

The introductory comments are ignored (just like in speeches!). The label
definition LOOP: also generates no code. Thus instruction 0 is the number 5. The
next token is aim. Since it is an unquoted variable, it expands to two instructions:
the code for the variable AIM followed by the code for the operator RECALL.
They are, as noted in the sections on operators and variables below, 20330 and
20109, respectively. The next token, +, is converted into its code, 20000. Aim’ is a
quoted variable, so only the variable code, 20330, is generated. The token store is
an operator, so its code, 20100, is produced next. The next token, the label LOOP,
generates the address of the first instruction following the label definition LOOP:.
This instruction is number 0, the very first one in the program. Therefore, a 0 is
generated for the LOOP label. Finally, the token jump is another operator and its
code, 20104, is produced. At the end of the program, the END instruction, 20110,
is appended. Thus the object code consists of the following string of integers:

5 20330 20109 20000 20330 20100 0 20104 20110

This code is written to the robot’s resource fork as RCOD ID#1000. Also, the
length of the object code is written to the resource fork as RLEN ID#1000.

Page 20
If none of this example made any sense, relax. It is not necessary to write a good
robot. It is only included as a point of interest. Advanced programmers may use
the knowledge to examine the robot’s resource file (with ResEdit or another
resource editor) and check the code produced. A really warped programmer might
work out the addresses of parts of his object code to produce a jump table instead
of a set of labels, so that the jump address could be calculated, rather than using a
series of IF constructs to make the jump. If anyone ever has to do this kind of
exotic programming, however, this author will be very impressed.

RoboWar imposes a few limits on the size of a robot’s program. First, the source
code may not exceed 32767 characters. No problem! There may be no more than
100 label definitions in any one program. Also, the assembled program may not
have more than 500 instructions. The stack may have no more than 100 operands
on it at any one time. If any of these limitations become a problem, a long walk in
fresh air is recommended.

Operators

This section lists each operator. It gives the name, the code number generated, and
the effect it has on the stack or robot state. The operands are as follows:

+ - *
/ > <
= ! STO / STORE
DROP SWAP ROLL
JUMP / RETURN CALL DUP / DUPLICATE
IF IFE (RECALL)
(END) NOP AND
OR XOR / EOR MOD
BEEP
ARCTAN

CHS NOT

+: Code 20000
Adds the top two numbers on the stack, removes them, and replaces them with the
result.
Ex: “4 5 +” leaves 9 on the top of the stack.

-: Code 20001
Subtracts the top number from the second number on the stack, removes them, and
replaces them with the result.
Ex: “9 3 -” leaves 6 on the top of the stack.

Page 21

*: Code 20002
Multiplies the top two numbers on the stack, removes them, and replaces them
with the result.
Ex: “2 4 *” leaves 8 on the top of the stack.

/: Code 20003
Divides the second number by the top number on the stack, removes them, and
replaces them with the result.
Ex: “22 3 /” leaves 7 on the top of the stack. (7.3333 is truncated to 7)

>: Code 20004
Checks if the second number on the stack exceeds the top number, then removes
them. If the second number is greater, it places a 1 on the stack, otherwise it
pushes a 0.
Ex: “5 4 >” leaves a 1 on the stack.

<: Code 20005
Checks if the second number on the stack is less than the top number, then removes
them. If the second number is less, it places a 1 on the stack, otherwise it pushes a
0.
Ex: “7 3 <” leaves a 0 on the stack.

=: Code 20006
Checks if the top two numbers on the stack are equal, then removes them. If they
are equal, it places a 1 on the stack, otherwise it pushes a 0.
Ex: “2 2 =” leaves a 1 on the stack.

!: Code 20007
Checks if the top two numbers on the stack are not equal, then removes them. If
they are not equal, it places a 1 on the stack, otherwise it pushes a 0. (The
symbol ! comes from the logical NOT command in the language C.)
Ex: “5 5 !” leaves a 0 on the stack.

STO or STORE (either token is allowed): Code 20100
Stores the second number on the stack in the variable specified at the top of the
stack, and removes both the number and variable reference. The operand on the
top of the stack must be a quoted variable or an error is reported. Also see the
section on variables below, as values cannot be stored in some variables, such as
RANGE.
EX: “20 aim’ store” stores 20 in the variable AIM and leaves nothing on the stack.

Page 22

DROP: Code 20101
Drops the top element from the stack.
EX: “5 DROP” leaves nothing on the stack.

SWAP: Code 20102
Swaps the top and second elements on the stack.
EX: “1 2 SWAP” leaves 1 at the top of the stack and 2 in the second position.

ROLL: Code 20103
Rolls the second element of the stack back the number of places specified by the
top operand, then removes the top operand.
EX: “1 2 3 4 5 2 ROLL” rolls 5 back 2 places, leaving 1 2 5 3 4 on the stack.

JUMP or RETURN (either token is allowed): Code 20104
Jumps to the instruction number specified by the top element of the stack, removes
the top element, and resumes execution at the new instruction. The same operator,
usually written with the name RETURN, returns after a subroutine call made by IF
or CALL by jumping to the return address that the IF or CALL left on the top of
the stack.

CALL: Code 20105
Jumps to the instruction number specified by the top element of the stack, removes
the top element, places the return address (the instruction number previously being
executed) on the top of the stack, and resumes execution at the new instruction.
Very similar to JUMP, but leaves the return address on the stack.

DUP or DUPLICATE (either token is allowed): Code 20106
Duplicates the number on the top of the stack.
EX: “5 DUP” leaves 5 on the top of the stack and 5 in the second position.

IF: Code 20107
Checks the second operand on the stack. If it is not zero then it leaves the return
address on the stack and jumps to the label specified on the top of the stack. In any
case, it removes the second operand and the destination label from the stack.
EX: “32 MySub JUMP” jumps to the subroutine MySub and leaves the return
address on the stack.

IFE: Code 20108

Page 23
Stands for IF-THEN-ELSE. Checks the third operand on the stack. If it is not zero
than it leaves the return address on the stack and jumps to the label specified in the
second position on the stack. If it is zero then it leaves the return address on the
stack and jumps to the label specified on the top of the stack. In any case it
removes the first, second, and third elements from the stack.
EX: “0 SubA SubB IFE” jumps to the subroutine SubB and leaves the return
address on the stack.

(RECALL): Code 20109
This instruction cannot be entered from the source code. Instead, it is
automatically appended after each unquoted variable. It gets the value of the
variable specified on the top of the stack, removes the variable name, and places
the value on the stack. See the section below on variables for information about
their values.

(END): Code 20110
This instruction cannot be entered from the source code. Instead, it is
automatically placed at the very end of a program. If it is reached, the interpreter
reports that the end of the robot’s code has been reached and ceases the battle.

NOP: Code 20111
No OPeration. Does nothing whatsoever, except take up time and space. May be
used when some timing loop is necessary.
EX: “NOP” leaves nothing on the stack.

AND: Code 20112
Checks if the top two numbers on the stack are both not zero, then removes them.
If they are both not zero, it places a 1 on the stack, otherwise it pushes a 0.
EX: “2 3 AND” leaves a 1 on the top of the stack.

OR: Code 20113
Checks if either of the top two numbers on the stack is not zero, then removes
them. If either is not zero, it places a 1 on the stack, otherwise it pushes a 0.
EX: “0 4 OR” leaves a 1 on the top of the stack.

XOR or EOR (either token is allowed): Code 20114
Checks the top two numbers on the stack, then removes them. If one or the other,
but not both, are not zero, it places a 1 on the stack. Otherwise, it pushes a 0.

Page 24
EX: “1 2 XOR” leaves a 0 on the top of the stack.

MOD: Code 20115
Performs a modulus operation (remainder of integer division) on the top two
elements of the stack. Removes them and returns the result on the stack.
EX: “10 3 MOD” leaves 10 mod 3 = 10-3*Trunc(10/3) = 1 on the stack.

BEEP: Code 20116
Beeps once. Most useful in debugging a robot.
EX: “BEEP” leaves nothing on the stack.

CHS: Code 20117
CHange Sign. Multiplies the top operand on the stack by -1, removes it, and
returns the result on the stack.
EX: “3 CHS” leaves -3 on the stack.

NOT: CODE 20118
Logical Not. Checks top operand, removes it. Returns 1 if it was 0, 0 otherwise.
EX: “4 NOT” leaves 0 on the stack.

ARCTAN: CODE 20119
Inverse Tangent. Computes the inverse tangent of the ratio of the top two numbers.
The y value must be the top operand; the x value must be the second operand.
ARCTAN removes the top two operands and returns the arctangent of y/x. The
result is in degrees between 0 and 359, with 0 degrees pointing up, just as with
AIM angles.
EX: “-5 0 ArcTan” leaves 270 on the stack.

Variables

Each robot has a number of registers or variables. They are initialized to their
appropriate values, or 0 if none is appropriate, when the battle starts. This section
lists each variable, its code number, its use, and whether it can be read or written.
The registers are:

A-Z FIRE ENERGY
SHIELD RANGE AIM
SPEEDX SPEEDY DAMAGE
RANDOM MISSILE NUKE
COLLISION
MOVEX

CHANNEL
MOVEY

SIGNAL
RADAR

Page 25

Page 26
A-Z (except X and Y): Codes 20300-20325 (except 20323 and 20324)
User-defined variables. They may be used for any temporary storage that the robot
needs. They may be read or written.

X: Code 20323
X position of robot. May range from 0 to 300 (the boundaries of the board). 0 is
the left side; 300 is the right. X may be read but may not be written (no
unrestricted teleporting!).

Y: Code 20324
Y position of robot. May range from 0 to 300. 0 is the top; 300 is the bottom. Y
may be read but not written.

FIRE: Code 20326
Used to shoot bullets. Returns 0 if read, shoots bullet with energy investment
equal to amount written. This energy investment is removed from the robot’s
energy supply. It may exceed the robot’s current energy value (placing the robot at
negative energy and immobilizing it), but may not exceed the robots energy
maximum. Depending on the settings from the Hardware Store, bullets may be
normal, rubber, or explosive. Explosive bullets explode like TacNukes in a 30
pixel radius when they hit their target. Whey they detonate (6 chronons after
impact) they do damage of 1.5*energy investment to all robots in the blast radius.
Normal bullets do damage equal to the energy investment when they hit their
targets. Rubber bullets only do half damage if they hit. Bullets move across the
screen at a speed of 12 pixels per chronon, heading in the direction that the robot’s
turret pointed when the shot was fired.

ENERGY: Code 20327
Robot’s current energy. May be read, but not written. ENERGY returns the
amount of energy the robot currently has. If not used for other purposes, energy is
restored at 2 points per chronon. However, if the energy ever drops below 0, the
robot does not interpret any more instructions or perform any more actions until
the energy exceeds 0 again. When the battle begins energy is set to the maximum
energy value specified in the Hardware Store.

SHIELD: Code 20328
Robot’s current shield level. May be read or written. If read, it returns the current
level of the shield, or 0 if no shields are up. If written, is sets the shield level to the
value written. If the current level is less than the level written, a point of energy is
used for each point added to the shields.

Page 27
If not enough energy is available to set the shields, the shields are only
strengthened as far as remaining energy permits. If the current level is greater than
the level written, a point of energy is regained for each point of difference,
although energy cannot exceed the maximum energy value set in the Hardware
Store. Shields can absorb damage from bullets, missiles, or TacNukes that
otherwise would have been deducted from a robot’s damage score. Each point of
damage that is done deducts one point from the shield level, until no power is left
in the shields. The remaining damage is then done to a robot’s damage score.
Even if shields are not hit, they decrease by one point each chronon from natural
energy decay. Shields may be charged above the maximum shield value set in the
Hardware Store (although they may never exceed 150), but if they are above
maximum, they decrease by two points instead of one per chronon. Shields are set
to 0 when the battle begins.

RANGE: Code 20329
Range to nearest target in sights. May only be read. If there is a target in the
direction the robot’s AIM points, RANGE returns the distance. Otherwise, it
returns 0.

AIM: Code 20330
Angle turret points. May be read or written. The angle is in degrees, oriented like
a compass with 0 degrees pointing upward and 90 degrees pointing to the right.
All bullets and missiles are fired in the direction that the turret is pointing.

SPEEDX: Code 20331
Speed of robot in left-right direction. May be read or written. Positive speeds
move right, while negative speeds move to the left of the screen. If SPEEDX is
read, it returns the current velocity; if it is written, it sets the velocity. Speeds must
be in the range of -20 to 20. Each point of change in speed costs 2 points of
energy; thus going from 10 to -2 costs 24 energy.

SPEEDY: Code 20332
Speed of robot in up-down direction. May be read or written. Positive values
move down, while negative values move up. SPEEDY has the same limits and
characteristics as SPEEDX.

DAMAGE: Code 20333
Robot’s current damage rating. May only be read. When the battle begins, the
damage rating starts at the maximum value set at the Hardware Store. Damage
caused by bullets, missiles, and TacNukes that is not absorbed by

Page 28
the robot’s shields is removed from the damage rating. When it reaches 0, the
robot is dead.

RANDOM: Code 20334
A random number from 0 to 359. May only be read.

MISSILE: Code 20335
Used to shoot missiles. Returns 0 if read, shoots bullet with energy investment
equal to amount written. This energy investment is removed from the robot’s
energy supply. It may not exceed 50; if it does, only 50 energy is used. Missiles
do 1.5*energy investment in damage if they hit their targets. Bullets move across
the screen at a speed of 5 pixels per chronon, heading in the direction that the
robot’s turret pointed when the shot was fired. Missiles cannot be used unless they
were first enabled at the hardware store.

NUKE: Code 20336
Used to place TacNukes, or Tactical Nuclear Devices. Returns 0 if read, places
TacNuke with energy investment equal to amount written. This energy investment
is removed form the robot’s energy supply. It may exceed the robot’s current
energy value (placing the robot at negative energy and immobilizing it), but may
not exceed the robots energy maximum. TacNukes begin to explode as soon as
they are placed, increasing in radius by 5 pixels each chronon. At the tenth
chronon, when they have a radius of 50, they detonate and cause 1.5*energy
investment in damage to all robots in the radius. Robots who lay TacNukes are
well advised to hasten away and be out of the blast radius when the devices
explode. TacNukes cannot be used unless they were first enabled at the hardware
store.

COLLISION: Code 20337
May only be read. If another robot has collided with the current robot, the
COLLISION variable returns 1; otherwise it returns 0. When a collision with
another robot takes place, both robots take one point of damage each chronon until
they separate. They may either separate by changing direction, or by blowing the
rival to little pieces.

CHANNEL: Code 20338
The robot’s broadcasting and receiving channel. May be read or written. If it is
read, it returns the current channel. If it is written, it sets the channel. The channel
must be in a range of 1 to 10. Communications over a given channel only affect
robots on the same team. Thus, a robot must be

Page 29
placed on a team with at least one other robot at Camp if communications are to
have any effect.

SIGNAL: Code 20339
The signal value on the robot’s current channel. May be read or written. If it is
read, it returns the last value broadcast over the channel by any robot on the same
team. If it is written, the value written is broadcast over the channel and may be
read any time in the future by any other robot on the same team. Typically signals
and channels are used by two or more robots to coordinate movement or team up
against another set of robots.

MOVEX: Code 20340
Used to move the robot a given distance in the X direction without changing
SPEEDX. Returns 0 if read, moves the robot the specified distance if written.
Movement costs two points of energy per unit moved. The distance must be
between -20 and 20 units.

MOVEY: Code 20341
Used to move the robot a given distance in the Y direction without changing
SPEEDY. MOVEY has the same characteristics and restrictions as MOVEX.

RADAR: Code 20343
Range to nearest bullet, missile, or TacNuke in the path of AIM. May only be read.
RADAR checks a path 40 degrees wide centered on the AIM. It returns the
distance to the nearest bullet, missile, or TacNuke in this path. If there are none, it
returns 0. Note that the weapon detected might be moving perpendicular to the
aim, not toward the robot.

Interpreter

The RoboTalk Interpreter, which interprets the assembled code as the battle takes
place in the arena, looks up and executes several instructions each chronon.
Depending on the processor speed, set through the Hardware Store, it may
complete 5, 10, or 15 cycles each chronon.

Each cycle, the interpreter fetches and handles one instruction. The one apparent
exception is the unquoted variable, which takes two cycles because it really
consists of a variable name followed by a RECALL operator. Operands, such as
numbers, labels, and variable names, are just pushed onto the stack. Operators
perform actions on the data on the stack and may return information to the stack, as
discussed above.

Page 30

Page 31
Robots with faster processors can perform more actions each chronon, and thus
interpret complicated code at reasonable speed. However, they still only recover
energy at the rate of 2 points per chronon, so they may find themselves consuming
power faster than is practical.

Part V: Advanced Features

With the introduction of RoboWar version 1.5, two advanced features have been
added: automated combat and password protection.

Password protection is quite simple to use. In the Drafting Board, choose the Add
Password button. A dialog will prompt you for the password; a second one will
verify that you typed your password correctly. Once a robot has a password, the
password must be entered to open the robot. This way, other people may watch
your ’bot in combat but may not view the source code. If you forget your
password, send me your disk with the robot and five dollars. I’ll fix the robot if it
is possible.

Robots with passwords are stored with their source code encrypted. This prevents
people with a sector editor from viewing your code illegally. Furthermore, the
password is encoded to make breaking into robots an even greater puzzle. I
challenge all the intrepid RoboWar hackers to try breaking in; I will recognize in
the RoboWar hall of fame the first person to break the code. Be careful, though.
You are likely to corrupt the robots if you play around with their passwords from
ResEdit or another resource editor. Thus I would suggest working only on backup
copies. I personally dislike passwords and feel that anyone who messes up his
robot while fooling with passwords deserves his fate.

The second advanced feature is automated combat under the Tournament menu.
This command prompts the user for an ASCII TEXT file with a list of combatants.
The text file must have been created with a separate text editor such as your
favorite word processor or programming environment. It lists the file to save the
results in, the number of times each group of robots should fight, and the
individual robots to battle. A sample file appears below:

SAVE MY BATTLE RESULTS

3
TimBot
Stationary
DumBot

Pearl

Page 32
Lich
Aeneas III
Silo IV

2
Blade
Freud

The first line, “SAVE MY BATTLE RESULTS” is optional. If you want a record
of the results, type “SAVE” followed by the file name to which RoboWar should
write the results. Note that RoboWar will overwrite an old file with the same
name. Leave a blank line after the SAVE directive, then specify the number of
times that a group of robots sould fight. For instance, the first group, TimBot,
Stationary, and Dumbot, will battle 3 times. If you ommit the number of times, as
is done in the second group, RoboWar defaults to one combat. Note that the
combats must involve from two to six robots each.

Automated combat is strictly an advanced feature for people trying to run large
tournaments. The error checking is of marginal quality, so be sure that your battle
lists are in the proper format.

Appendix A: A Brief History of RoboWar

Many moons ago, the world was lacking RoboWar. Then one crisp spring night a
bunch of fanatical teen-age computer programmers were sitting around at a
meeting of the Ridgecrest IEEE Student club tossing out programming ideas and
dodging the shrapnel. Sick of hand-eye arcade games, the concept of robots
fighting without user intervention grabbed their attention. Thus was born
RoboWar.

The computer club members debated many ideas. At first they considered placing
robots on a board full of obstacles and challenges. They thought about building
robots by dragging icons about to form various subsystems. Jon Richards was the
first to prototype RoboWar code on a foul MS-DOS clone. Later that summer at
Caltech, David Harris saw an early version of another robot-battle style game
being developed by students there. He liked the concept of the programming
language for robots and saw a number of other ideas for improvement.

In the fall, while climbing Dragon Peak out of Onion Valley in the Sierra Nevada,
David was hit across his head with a fascinating, efficient, and easy to implement
programming language based on Reverse-Polish notation. Fortunately, another
computer club veteran, Ralph Giles, was also on the

Page 33
hike and the two worked out the details of the language, with inspiration from the
HP-28 calculator language, C, Pascal, and assembly language in addition to their
own foul concoctions. Fortunately, they wrote a complete synopsis of the
interpreter, for, although Ralph spent a bit of time working on it on another clone,
it wasn’t until December that David began to implement it on a real machine.

David first designed an interpreter and compiler that ran, albeit clumsily, on a
Silicon Graphics workstation. Then he ported it to the Macintosh, built up a user
interface, and spend most of Christmas vacation chasing bugs. When the program
worked reliably, progress greatly slowed, for he spent extensive time “playtesting”
instead of coding.

Since that point, robots have evolved through a number of stages. This history
details the development of code by the IEEE club members. Doug Harris, David’s
demented brother, also built a number of robots, ranging from unreliable to
excellent in quality, that followed some convergent and some divergent branches of
evolution. The IEEE club robots have come through six generations:

First generation robots include MoveBot (listed below) and DumBot. They were
written to test the interpreter on the Silicon Graphics. They duel nicely but fairly
randomly. Each was generally less than a page in length and wasn’t smart enough
to kill its opponent in a single shot. TimBot (also listed below), a simple but
effective robot, lead the second generation of robots into existence. Written by
Tim Seufert on the Macintosh, it locked onto stationary robots and blew them to
tiny bits. Originally, it used less energy in its shots and took longer to eliminate its
opponents, but still, TimBot made completely stationary robots unviable.

In response to TimBot, drooling hackers started to produce a third generation of
robots. These typically moved about the board. One interesting pair of third-
generation robots were Coroner 1 and 2. These ’bots moved to opposite corners
before shooting at any targets they saw. If they began taking damage through their
shields, they would flee to the opposite corners.

Matt Sakai changed the entire course of robot evolution when he brought Silo IV to
a meeting on a nondescript floppy disk. Silo IV, the one and only fourth generation
robot, moved about the board and almost unfailingly destroyed its first, second,
and third generation opponents. For a time, the IEEE group was stunned; David
even added some more features

Page 34
to the interpreter that robot designers might try because Silo IV seemed to be the
ultimate robot in the evolutionary tree.

Nonetheless, after a few weeks, numerous other robots using similar tactics sprung
from the silicon mind. These fifth generation robots, the so-called “Silo clones”,
eventually managed to equal, then best Matt’s Silo IV. Among the Silo clones were
Robot B2 (the product of David Wasserman’s nightmares), TimBot IV (at first the
joke of the IEEE group, later a reasonably effective robot), Freud (most famous for
his remarkable icon), and Blade (the best Silo clone yet developed). To test these
robots, the IEEE members ran extensive combats and developed the “TimBot
Test:” how many plain-vanilla TimBots on one team can one robot defeat at one
time in at least 60% of the combats? Most Silo clones could almost always defeat
a single TimBot and could defeat two more than 60% of the time.

Fortunately, before things became too dull, robots using other strategies began to
appear. Among these sixth generation robots were Lewis Girod, Aeneas II, and
Pearl. Aeneas broke the three TimBot barrier. Unfortunately for his creator, Pearl
appeared soon after, usually capable of overcoming five other TimBots teamed
together in a battle! Pearl, another product of Matt Sakai, is the current champion.

What is the future of RoboWar? Pearl appears to be very good but Silo at one
point also seemed unbeatable. Few robots have been written to work effectively
together on teams; few use the communications or advanced projectile detection
capabilities. Perhaps somebody will develop tracking algorithms or discover
another excellent algorithm lurking just out of sight. The IEEE group has proposed
a number of questions about robot behavior that they still have not answered, so
there is still ground to explore. For the novice, RoboWar has much excitement
waiting as one learns to program and to overcome each generation. For the expert,
too, the horizons of RoboWar are still beckoning.

In such a state RoboWar rests April 16, 1990. I will be sponsoring a RoboWar
tournament in early June in which the best robots of each contestant may compete
for glory and riches. See the about box for more details. Also, please pay your
shareware fees if you enjoy RoboWar. I put a great deal of time and effort into
programming. Since the $10 fee is so much less than the cost of a professionally
marketed game, I would appreciate the money.

Page 35
History Continued. On June 1st, (tonight, as I write) we are collecting the robots
for the tournament. We received 11 entries at $2 each. Matt introduced his
reputedly fearsome seventh generation “Religion” robots-Hinduism, Judaism, and
(The Great God) Anything, replete with wild comments as well as powerful new
designs. Yes, there are robots better than sixth generation Pearl clones! We are
waiting for the robots from Northwestern University (hopefully Jon will send
some) and plan to hold the competition very soon. YAWP!

Appendix B: Version History

Robots are not the only beast to be evolving with time. The RoboWar application
has gone through numerous versions, expanding features, patching bugs, and
introducing new and wonderful bugs. This version history records the changes
from version 1.5 onward.

Version 1.5 (May 18, 1990)
This version introduces two major new features: automated combat and password
protection. In anticipation of the upcomming tournament, I added these features to
help run the large number of combats and to keep everyone’s code secret. Notice:
I hate passwords, so if anyone has their robot garbled by the password protection,
I’ll just laugh. Version 1.5 also adds the “Don’t show battle” menu option. This
speeds up battles significantly, especially on a color monitor. After extensive
testing I found that 256 color mode slowed RoboWar down the greatest amount
during most combats; however, a large number of bullets on the screen at one time
(as used by Matt’s Pearl and his seventh generation robots) slows the game even
further. Worse yet, not showing the battle scarcely improves the performance of
missiles. I dread running large numbers of combats with his robots. They usually
take at least ten minutes. A final change: a number of intrepid RoboWar hackers
discovered a method of cheating to create nearly invincible robots by going
through a back door in the program. Unfortunately for them, I now check for this
method of cheating and tweak any robots who violate the rules. Don’t worry: you
won’t stumble upon this method of cheating by accident.

Version 1.5.1 (May 28, 1990)
This version is a bug fix on version 1.5. Most significantly, I found that the DUP
command does not work in the old versions. This causes great problems and
confusion for robots using DUP. Now DUP behaves correctly. I also fixed some
glitches in the password protection, regarding opening robots. I also added tallying
features for group battles to the

Page 36
automated combat menu. Finally, I updated these instructions to include some of
these advanced features.

Appendix C: Sample Robots

This appendix lists two robots that might provide helpful examples. The first one
demonstrates wall detection in a moving robot. At the hardware store, its Damage
Max should be set high, Shield Max low, and rubber bullets and missiles should be
chosen.

{ MoveBot
 Created 11/21/89 by David Harris.
}

START:
 3 speedx’ store
 2 speedy’ store
 25 shield' store

MAIN:
 aim 5 + aim' store # Rotate Turret
 x 50 < xmin if # X minimum
 y 50 < ymin if # Y minimum
 x 250 > xmax if # X maximum
 y 250 > ymax if # Y maximum
 range 0 > shoot if # Shoot if range >0
 25 shield' store
 main jump

XMIN:
 random 3 mod 1 + speedx' store
 return

YMIN:
 random 3 mod 1 + speedy' store
 return

XMAX:
 -1 random 3 mod - speedx' store
 return

YMAX:
 -1 random 3 mod - speedy' store
 return

SHOOT:
 energy 2 / missile' store # Missiles must be enabled
 energy fire' store
 return

The second example was the first robot my friend Tim Seufert designed. It smacks
of too much Douglas Adams science fiction, but nonetheless is quite effective
against stationary targets, as it locks on, shooting until its target is

Page 37
destroyed. Note that the following changes should be made in the hardware store:
Shield Max None, Explosive Bullets Enabled, Fast Processor.

Tim's Robot
Designed by the same person
Who, at the present, due to the presence
of altogether too many Electric Monks,
believes that he is a banana and that Dodo
is more powerful than Mac II, thereby
causing his programming ability to
deteriorate. Oh well.

 random aim' store

Main:
 range 0 = rotate shoot ife
 main jump

rotate:
 aim 17 + aim' store
 return

shoot:
 energy 20 > reallyshoot if
 return

reallyshoot:
 energy fire’ store
 return

